Taking big risks for big science: approaches to lowering the cost of large space telescopes

Ewan S Douglas^a, Daewook Kim^a, Kyle Van Gorkom^a, Greg Aldering^b, Greg Allan^c, Ramya Anche^a, Cameron C. Ard^a, Supriya Chakrabarti^f, Laird M. Close^a, Kevin Derby^a, Jerry Edelstein^g, John Ford^a, Jessica Gersh-Range^h, Hyukmo Kang^a, Patrick J. Ingraham^a, Douglas M. Kelly^a, Michael Lesser^a, Jarron M. Leisenring^a, Jared R. Males^a, Buddy Martin^a, Bianca Alondra Payan^a, Sai Krishanth P.M.^a, David Rubin^d, Sanford Selznickⁱ, Buell T. Jannuzi^a, and Saul Perlmutter^{b,g,j}

^aUniversity of Arizona (UArizona), Tucson, AZ, USA ^bPhysics Division, Lawrence Berkeley National Lab, Berkeley, CA, USA ^cMassachusetts Institute of Technology, Cambridge, MA, USA ^dDepartment of Physics and Astronomy, University of Hawai'i at Mānoa, Honolulu, Hawai'i,

^fUniversity of Massachusetts Lowell, Lowell, MA, USA ^gSpace Sciences Laboratory, University of California, Berkeley, CA, USA ^hPrinceton University, Princeton, NJ, USA ⁱAscending Node Technologies, LLC, Tucson, AZ, USA ^jDepartment of Physics, University of California Berkeley, Berkeley, CA, USA

- USA

Accelerating astrophysics with the SpaceX Starship

NURPHOTO SRL/ALAMY STOCK PHOTO

Martin Elvis, Charles Lawrence, and Sara Seager By substantially increasing the mass and volume of its reusable

transportation system without raising costs, SpaceX may enable NASA to implement future missions years ahead of schedule.

Martin Elvis is a senior astrophysicist at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts. **Charles Lawrence** is the chief scientist for astronomy and physics at NASA's Jet Propulsion Laboratory in La Cañada, California. **Sara Seager** is a physics professor at MIT in Cambridge.

Physics Today. 2023;76(2):40-45. doi:10.1063/PT.3.5176

Source: CSIS Aerospace Security.

https://aerospace.csis.org/data/space-launch-to-low-earth-orbit-how-much-does-it-cost/

Source: CSIS Aerospace Security.

https://aerospace.csis.org/data/space-launch-to-low-earth-orbit-how-much-does-it-cost/

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE

╺╋╼

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE

Historical Observatory Costs

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE Astronomy & Steward Observatory

Figure: Jared Males & Ewan Douglas Includes observatory building Or launch costs

How to break the cost curve?

	Possible Approaches	Assumptions	
Design	Minimize new design work, create production lines	Maintain Flexible Science Requirements to Adapt to Prior Art	
Analysis	Simple requirements and build with extra margin via control	Create tolerance envelopes for controls based approach	
Test	Minimize on-ground testing and instrument for on-orbit testing	Multiple revisions	
Documentation	Minimize redundancy and maximize automation	Git	
Materials	Maximize use of COTS electronics, Minimize use of composites	Aluminum and Invar structures, rad-tol electronics processors	

Two "simple" science cases to explore design space

Supernova Spectroscopy

Exoplanet direct imaging

Primary operation wavelength	650 nm	
Nominal filter bandwidth	2%	minimizes sensitivity to
Deformable Mirror Actuator	952	BMC Kilo-C DM 1.5un
Count		
Deformable Mirror Actuator	1500 nm	BMC Kilo-C surface s
Stroke (max)		4x4 actuators
Coronagraph mask	Charge-6 VVC	
IWA	$2.4\lambda/D$	depends on mask
OWA	$10\lambda/D-15\lambda/D$	depends on WFE
Sensitivity	1e-8 or dimmer star-planet flux	sensitivity to debris of
	ratio	sub-Neptune size plane
		itable zones of nearby s

Table 2. Desired ESC Coronagraphic Instrument Parameters.

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE Astronomy & Steward Observatory

Parameter	Value	Notes
Wavelength range	λ = 400 nm to 1700 nm	Allows Type Ia supernova (SN) characterizatie redshifts $0 < z < 2$
Wavelength resolution	R=100 at $1\mu {\rm m}$	S/N > 10 per resolution element (in the rest-f B band for aa flux of AB=25 mag)
FOV	${\sim}1~{\rm arcsecond}$	Allows spectrophotometry, including subtra- of host galaxy from SN spectra
Photometric accuracy	3 millimag	Relative to standard stars
	Table 1. Desired Spectrograp	oh Instrument Parameters.

Concept heritage: SNAP (Elat et al 2004)

Concept heritage: CDEEP/SCoOB (Van Gorkom et al 2022), PICTURE-C/D balloon (Mendillo et al, Monday's talk)

Mirrors

• RFCML has cast over 20 honeycomb Ohara E6 borosilicate mirrors*, seven 6.5 m f/1.25 Sensors:

• Commercial CMOS sensors make feasible gigapixel arrays with low read-noise affordable (e.g. Alarcon et al 2023)

Computing:

Thursday 4:50 PM, in 11A)

Document management

Douglas et al 2018, O'Mullane et al 2022)

Optical Design

• Improved simulation tools and affordable computing resources (subsequent talks)

• Rad-tolerant embedded computing enables active on-board control (e.g. Derby et al, Kang et al and Belsten et al

• Automation of interface and document management can allow nimble teams and minimize document waste (e.g.

10

*https://mirrorlab.arizona.edu/content/mirror-castings

Sub-aperture coronagraphy is simpler

COLLEGE OF SCIENCE Astronomy & Steward Observatory

We have been here before: JPL/Caltech Princeton NRO Telescope Workshop John Trauger, 6 September 2012:

Case 1: an unobscured off-axis subaperture of the NRO

"So coronagraph performance with the NRO subaperture is immediately understood in terms of the ACCESS study.

Inner working angle is increased, while the contrast floor is possibly unchanged from ACCESS. Technology readiness is high."

<u>Goals are different:</u>

Nearer stars Brighter stars Telescope is bigger Schedule is 5x shorter Tech is even more mature

design to eliminate deployables

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE Astronomy & Steward Observatory

A telescope that fits in a rocket fairing

-> see Daewook Kim's talk next

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE Astronomy & Steward Observatory

Economies of scale

Mirrors

- UA RFCML has cast over 20 honeycomb Ohaha E6 borosilicate mirrors, including seven 6.5 m f/1.25 with the Multiple Mirror Telescope Conversion design
- Sensors:
 - Commercial CMOS sensors make feasible gigapixel arrays with low read-noise affordable (e.g. Alarcon et al 2023)

Computing:

• Rad-tolerant embedded computing enables on-board control (e.g. Evaluating embedded hardware for highorder wavefront sensing and control, Belsten et al Thursday 4:50 PM, in 11A)

Document management

Automation of interface and document management can allow nimble teams and minimize document waste (e.g. Douglas et al 2018, O'Mullane et al 2022)

*https://mirrorlab.arizona.edu/content/mirror-castings

Use a heavily analyzed primary mirror

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE Astronomy

4

Honeycomb Mirrors for Large Telescopes

John Hill¹ · Hubert Martin² · Roger Angel² ¹Large Binocular Telescope Observatory, University of Arizona, Steward Observatory, Tucson, AZ, USA ²Department of Astronomy, University of Arizona, Steward Observatory, Tucson, AZ, USA

http://link.springer.com/10.1007/978-94-007-5621-2_4

• UA RFCML has cast over 20 honeycomb Ohaha E6 borosilicate mirrors, including seven 6.5 m f/1.25 like the Multiple Mirrør Telescope Conversion (cast in 1992)

UArizona Richard F. Caris Mirror Lab 4+ 6.5m mirrors to date

& Steward Observatory

Astronomy

ure 1. Support pattern for the MMT primary mirror. Most actuators, including all dual axial-lateral actuators, bly force through 3-point loadspreaders. Some axial-only actuators have 2-point loadspreaders or single pucks.

Martin et al http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=945198

More info: Honeycomb Mirrors for **Large Telescopes**

John Hill¹ · Hubert Martin² · Roger Angel² ¹Large Binocular Telescope Observatory, University of Arizona, Steward Observatory, Tucson, AZ, USA ²Department of Astronomy, University of Arizona, Steward Observatory, Tucson, AZ, USA

http://link.springer.com/10.1007/978-94-007-5621-2_4

High Frequency Modes (EAR99)

Mode

	Model	Boundary Conditions
	Face Plate	Outer Diameter of Mode constrained. Backplate unconstrained (rib-only bending modes not included)
		Adjacent ribs constrained around a single core
		Outer Diameter of Model
	ID	constrained. Backplate unconstrained
	OD	Outer Diameter of Model constrained. Backplate unconstrained
ANSYS 2000	Special OD	Outer Diameter of Model
	Cores	constraineu. backpiate

xet

unconstrained

ANT

Q: Faceplate Modal

Total Deformation 17 Type: Total Deformation

Frequency: 3140.2 Hz

3.6991 3.1707 2.6422

2.1138

3 1265

2 3249 1.954 1.5632 1.1724 0.78162 0.39061 0 Min

Unit: in 8/16/2021 8:03

Jamison Noenickx, UA Steward Observatory Richard F Caris Mirror Lab

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE

UA 6.5m Mirror Bending Modes (EAR99)

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE

FIGURE 9. LIMITS ON SPATIAL VARIATION OF SOUND PRESSURE LEVELS IN PAYLOAD BAY AT LIFT-OFF (BASED ON STS-1, STS-2 AND STS-3 LAUNCHES)

https://ntrs.nasa.gov/api/citations/19830008969/downloads/19830008969.pdf

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE

Astronomy & Steward Observatory

GMT style load spreader Richard F Charis mirror lab (photo E. Douglas)

Leverage commercial sensor breakthroughs

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE Astronomy & Steward Observatory

true 16-bit CMOS sensors (e.g. Sony IMX411, IMX455, IMX571).

~le read noise

Low dark noise

Radiation tolerant

--> Affordable gigapixel arrays

FIGURE 2: Fit to speed-resolution product of the top three designs in each year. The red markers indicate data reported after 2010. The fit line has a slope of 2x/4 years. 0.1109/MSSC.2015.2442393

Sensors

Dark noise of IMX455

Figure 1. Comparison of Instrument Fields of View -**Roman, Hubble, and James Webb Space Telescopes**

Roman and TESS guide from the science cameras

We propose guiding + continuous wavefront sensing

~5x13 arcmin Concept FOV Daewook Kim's talk (next)

Adapted from <u>Bartusek</u> et al 2022

10.1109/AERO53065.2022.9843415.

JWST phase retrieval (Dean et al 2006)

Fig. 5. Hybrid Diversity Algorithm (HDA) block diagram.

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE Astronomy & Steward Observatory

Fig. 15. High-speed parallel computing system for wavefront sensing.

10.1117/12.673569

TigerSHARC-Octal 6U

Bahcall 1980ApJS. . .44. . .73B

Field of view

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2021 by K. Rupp

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE Astronomy & Steward Observatory

© © BY SA https://github.com/karlrupp/microprocessor-trend-data

GPUs are going to space

Company	Component	Performance	Software Support	ECC protection	Radiation Results Available	Flight board available
NVIDIA	Xavier	Best	CUDA/Vulkan	Yes	Yes	No
NVIDIA	TX2	High	CUDA/Vulkan	Yes	Yes	Yes
AMD	V1605B	Medium/High	OpenCL/HIP/ Vulkan	Yes	Yes	Yes
ARM Mali- G72	HiKey 970 HiSilicon	Medium	OpenCL	No	No	No
AMD/Unibap	DDX-i5	Medium	OpenCL	Yes	Yes	Yes
AMD/Unibap	DDX-i10	Medium/High	OpenCL/HIP	Yes	Yes	Yes

Kosmidis, L., Rodríguez, I., Jover, Á., Alcaide, S., Lachaize, J., Abella, J., et al. (2021). GPU4S (GPUs for Space): Are we there yet. In *Proceedings of the European Workshop on On-Board Data Processing (OBDP), Online* (pp. 14–17). https://zenodo.org/record/5520783 30

THE UNIVERSITY OF ARIZON COLLEGE OF SCIENCE Astronomy & Steward Observatory

GPUs in space allow us to leverage existing groundbase AO software built on **CUDA**

We've already begun work on code testing and reliability in public repos

https://xwcl.science/

cacao: Compute And Control for Adaptive Optics

cacao is a computation engine for adaptive optics control.

Compute Performance: Uses multi-core CPUs and GPGPUs for high computing throughput. Written in C, optimized for performance. Holds images in RAM, with image stream support (shared memory with lowlatency IPC support). cacao uses milk.

User input: Executable launches a command line interface (CLI) from which functions are accessible. Type "help" in the CLI to get started.

Modular, easy to add functions, loaded at runtime as shared objects.

(Guyon et al 2018, Proc SPIE)

https://github.com/milk-org/ImageStreamIO https://github.com/magao-x/

Then

EXHIBIT I

EXAMPLE "A"

Specification No._____ Dated____

PERFORMANCE AND DESIGN REQUIREMENTS SPECIFICATION

FOR THE

/APOLLO PROGRAM (Approved Name)

Approved By (Preparing Activity)	Approved By (NASA Office)
Date	Date
Contract Number	

https://www.ibiblio.org/apollo/Documents/Apollo%20Configuration%20Management%20Manual%20%281970%29.pdf

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE Astronomy & Steward Observatory

E C spacetele poppy	scope /		Q + +	0 12 6
<> Code	s 28 🎝 Pull	requests 5		Projects
Edit <> Code -				Jump t
Addition of Cu #499	uPy as an A	ccelerated	d Computir	ng Optior
\$⊷ Merged				
mperrin merged 63 cor	mmits into spacete	lescope:develop	from kian1377:	develop 🗘 on
Conversation 42	Commits 63	Checks 8	Files change	d 27
http:	s://github.com/sp	acetelescope/p	oppy/pull/499/co	ommits

Git, not just for software

Doc management:

- automates tracking of all document changes, eliminating human error in change control.
- In use for legal document management (<u>https://www.athennian.com/</u>) and Excel (<u>https://hdl.handle.net/1822/68730</u>)
- Integrated with <u>overleaf.com</u>
- Used for requirements tracking (Browning 2014, Douglas 2018 (<u>https://arxiv.org/abs/</u> <u>1807.05422</u>)
- Requires cultural shift for non-software teams but many science teams are already comfortable (See "CAOTIC", Iva Laginja et al, Proc SPIE 2022)

E () poppy		Q + - O 12
<> Code ① Issues 28	ຳ Pull requests 5	Actions Projects
Edit <> Code -		Jump
Addition of CuPy a #499	as an Accelerat	ed Computing Optio
Addition of CuPy a #499 & Merged	as an Accelerat	ed Computing Optio
Addition of CuPy a #499 & Merged mperrin merged 63 commits in	nto spacetelescope:deve	ed Computing Optio

Lab validation @3:20pm

Dr. Hyukmo Kang, \bullet

Mirror bending modes — fitting a basis set

Solvay Blomquist

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE Astronomy & Steward Observatory

What's next today?

End-to-End simulation @4pm

Electronics testing for Vacuum coronagraph testbed @4:20pm

Flight DM electronics design (Yesterday, see SPIE proceedings)

Dr Christian Haughwout³⁵ ullet

Dr Kyle Van Gorkom \bullet

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE Astronomy & Steward Observatory

What's else?

+ next two talks on optical design

Dr. Michael Logan Lampton (1941-2023)

Portions of this research were supported by funding from the Technology Research Initiative Fund (TRIF) of the Arizona Board of Regents and by generous anonymous philanthropic donations to the Steward Observatory of the College of Science at the University of Arizona.

THE UNIVERSITY OF ARIZONA COLLEGE OF SCIENCE

Astronomy & Steward Observatory

Dedication

Dr. James Breckinridge (1939 - 2022)

